Chapter 1
Introduction

William A. Imbriale, John Huang, and Mark S. Gatti

Spaceborne Antennas for Planetary Exploration traces the development of
the antennas used on JPL Spacecraft from their inception on the very first
United States Explorer Mission in 1958 to the present. To completely cover all
types of spacecraft antennas would be a daunting task indeed, and is not the
intent of this monograph. Rather, the focus is only on antennas that have flown
on Jet Propulsion Laboratory (JPL) spacecraft or were used for JPL scientific
instruments that have flown on other spacecraft. The monograph primarily
deals with the RF design and performance of the antennas and associated front-
end equipment, but it also includes a chapter on mechanical development. It
describes all the new designs and technological innovations introduced by JPL.
There is also a thorough treatment of all the analytical and measurement
techniques used in the design and performance assessment. This monograph
can serve as an introduction to newcomers in the field or a reference for the
advanced practitioner. The technical terms in the text assume that the reader is
familiar with basic engineering and mathematical concepts including material
typically found in a senior-level course in electromagnetics.

This book is complementary to [1], which describes the JPL ground
network antennas. However, whereas the ground antennas are primarily for
telecommunication, the antennas on spacecraft can serve the dual purpose of a
science instrument and/or a means of communicating the science and telemetry
data to Earth. JPL’s support of the National Aeronautics and Space
Administration (NASA) space program has several distinct eras. The very first
mission was an Earth orbiter, quickly followed by unmanned exploration of the
Moon in preparation for NASA manned flight to the Moon. Missions to the
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Moon included the Ranger series that captured pictures of the surface as it flew
into the Moon, and the Surveyor spacecraft that successfully landed on the
surface of the Moon. The first interplanetary spacecraft were flybys, initially
targeting the inner planets of Venus, Mercury, and Mars. The flyby era
concluded with the “Grand Tour” Voyager Mission that flew by Jupiter, Saturn,
Uranus and Neptune." The next phase of space exploration was planetary
orbiters that collected data at Venus, Mars, Jupiter, and Saturn. Probably, the
most challenging and exciting missions to date have been the Mars landers, and
several of these missions are currently ongoing. In the planning stage are
sample-return missions. In addition to planetary exploration missions, there
have been a number of missions that have explored planet Earth, including
synthetic aperture radar (SAR) missions that have mapped the entire planet.

This monograph is organized around the various eras and has contributions
from many of the engineers involved in the development of the missions. The
contributors are all identified in the title of the section. Chapter 1 gives a brief
introduction and presents the methods of analysis, with supporting
mathematical details of the various antenna types described throughout the
remainder of the monograph. It also describes some design and measurement
techniques. John Huang contributed the sections on microstrip antennas, and
Mark Gatti provided the section on near-field measurements. Chapter 1,
combined with the first chapter of [1], gives a very thorough reference on
spacecraft and ground antenna analysis techniques, and it could be used in a
graduate course on electromagnetics.

Chapter 2, “The Early Years,” describes some of the antennas used on the
very first Earth-orbiting and Moon missions, such as the Explorer, Pioneer,
Ranger, and Surveyor spacecraft.

Chapter 3, “The Planetary Flybys,” describes the antennas used on the first
missions that flew by the planets. It includes the Mariner series of spacecraft
that flew by Mars, Venus, and Mercury, as well as the Grand Tour Voyager
Mission.

Chapter 4, “The Mars Missions,” by Joe Vacchoine, is a comprehensive
chapter that covers all the Mars missions including the early orbiters and
landers, as well as the more recent orbiters, landers, and rovers. It includes a
complete description of the antennas on the Mars Exploration Rover (MER)
landers.

Chapter 5, “The Orbiters,” with contributions from Roberto Mizzoni and
Mark Gatti, describes the antennas on the past and current orbiter missions (not
including the Mars Missions) such as the Magellan (Venus Radar Mapper), and
the Jupiter and Saturn orbiters. It describes the failed deployable mesh antenna

! In 1965 Gary Flandro proposed that, due to a once-per 175-year alignment of planets
on one side of the Sun in the 1970s, a multi-planet “Grand Tour” opportunity existed to
allow a single spacecraft to explore the four outer planets of the Solar System.
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on the Galileo Spacecraft as well as the complicated four-frequency combined
radar and communications antenna on the Cassini spacecraft.

Chapter 6, “Spaceborne SAR Antennas for Earth Science,” by Yunjin Kim
and Rolando Jordan, describes the Earth science SAR missions.

Chapter 7, “Instrument Packages,” by Richard Cofield, describes antennas
used on various instrument packages for science spacecraft. It includes antennas
used on scatterometers and radiometers. Richard Hodges contributed the
section on the Wide Swath Ocean Altimeter. There is some overlap in subject
material with Chapter 6 as a SAR antenna is also a science instrument, but each
chapter has a slightly different perspective and describes different instruments.

Chapter 8, “Mechanical Development of Antenna Systems,” by Greg Davis
and Rebekah Tanimoto, discusses the various mechanical aspects of spacecraft
antenna design. It also discusses the test program necessary to qualify a
spacecraft antenna.

Chapter 9, “Miscellaneous Other Antennas,” describes a few unique
antennas that did not readily fit into the other chapters. Included is the Solar
Probe antenna and the Deep Impact antenna by Dan Hoppe.

Finally in Chapter 10, John Huang discusses future spacecraft antenna
research and development.

1.1 Technology Drivers
William A. Imbriale

Antennas on board JPL spacecraft are used for telecommunications, as
science instruments, or for both purposes. Technology required for science
instruments is dictated by the specific science objectives and tends to be
mission specific. Technology drivers for deep-space telecommunications are
more universal and apply to all missions. The following discusses the main
requirements for deep-space telecommunications antennas.

The communication links to deep space are asymmetric, with considerably
more data on the downlink (space to Earth) than on the uplink (Earth to space)
because the downlink contains the science, and telemetry data and the uplink is
primarily used for commanding the spacecraft. The key element of the
telecommunications-link performance is the ground-received power signal-to-noise
ratio (SNR), which is given by
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where
Pr = spacecraft transmit power
Gry = transmitgain
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receive gain
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R = distance to the spacecraft

N = total noise

Ar = the effective area of the transmit (spacecraft) antenna
Ar = the effective area of the receive ground antenna

T, = receive system-noise temperature

A = wavelength

k = Boltzman’s constant

B = bandwidth

Thus, data rate is proportional to the spacecraft effective isotropic radiated
power (EIRP), or the product of antenna gain and radiated power. High-power
spacecraft transmitters and large-aperture antennas are a priority for increasing
direct-to-Earth telecommunications performance. Hence, a design that makes
the maximum use of the transmit antenna area (high efficiency) is desired.
However, not only should the antenna have high gain, but it must be pointed in
the right direction. In theory, the main beam pointing could be accomplished
electronically or mechanically. But to date, JPL has not used electronic beam
pointing, but has relied on mechanically pointing the beam either by gimbaling
the antenna or, in the case of a fixed body-mounted antenna, by pointing the
entire spacecraft. The necessity to point a high-gain antenna in the proper
direction gives rise to the need for antennas that will work when it is not
possible to accurately point the antenna. Thus, there is also the need for omni
type antennas (antennas that have almost complete spatial coverage) for times
when pointing may be completely unknown (emergency situations) or for
medium gain (broader beamwidth) when precise pointing may not be available.

There are also a number of environmental factors that must be considered
in spacecraft antenna design. The antenna must operate in the vacuum of space
and over wide temperature ranges. Sometimes, as in the case of the Solar Probe
antenna (Chapter 9), the extreme temperatures dictate the materials that can be
used in the design. The antenna must also survive the launch without damage.
This includes the launch loads, vibration, shock, and acoustic conditions.
Weight and power consumption are at a premium; hence the requirement for
light-weight materials. Size is also a major consideration, as the antenna must
fit inside the launch-vehicle shroud. For antennas that are too large to fit in the
shroud, it is necessary to fold and stow the antenna for launch and deploy it for
use.

There are many cases where a direct-to-Earth link, as described above, is
not feasible. These applications include small in-situ landers, microprobes, and
aerobots as currently in use or planned for Mars missions. These surface or
atmospheric probe missions are characterized by their small size (<100 kg) and
highly constrained energy budgets (<200 W-hr/sol). Typically, they cannot
afford the mass and energy required for any meaningful data return directly
over a deep-space link. Rather, these missions require, and are enabled by,
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energy-efficient relay communications commonly referred to as proximity links
[2,3]. Choice of frequency band is largely dictated by whether directional or
omni links are envisioned. For omni-to-omni links, lower frequencies perform
better, and the 400-MHz UHF links currently being utilized represent a
compromise between communications performance and radio frequency (RF)
component size.

1.1.1 Frequency Bands Allocated to Deep-Space Communications

The International Telecommunication Union (ITU) has allocated frequency
ranges for use in deep-space and near-Earth research. These ranges are listed in
Table 1-1.

1.1.2 Frequency Bands Recommended for Proximity Links

In addition to the formally allocated space-to-Earth links, the Consultative
Committee for Space Data Systems (CCSDS) provides a recommendation for
space data system standards in the area of proximity space links [4]. Proximity
space links are defined to be short-range, bi-directional, fixed, or mobile radio
links, generally used to communicate among probes, landers, rovers, orbiting
constellations, and orbiting relays. These links are characterized by short time
delays, moderate (not weak) signals, and short, independent sessions. The
ultrahigh frequency (UHF) frequency allocation consists of 60 MHz between
390 to 450 MHz. The forward frequency band (portion where the caller
transmits and the responder receives) is defined from 435 to 450 MHz. The
return band (portion where the responder transmits and the caller receives) is
defined as from 390 to 405 MHz. There is a 30-MHz deadband between them.

Table 1-1. Allocated frequency bands (GHz).

Deep-Space Bands Near-Earth Bands
for Spacecraft Farther Than for Spacecraft Closer Than
2 Million km from Earth 2 Million km from Earth
Band Uplink® Downlink® Uplink® Downlink”
S 2.110-2.120 2.290-2.300 2.025-2.110 2.200-2.290
X 7.145-7.190 8.400-8.450 7.190-7.235 8.450-8.500
Ka 34.200-34.700  31.800-32.300  Notapplicable  Not applicable

% Earth to space.
® Space to Earth.
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1.2 Analysis Techniques for Designing Reflector

Antennas
William A. Imbriale

Reflector antennas have existed since the days of Hertz. They represent one
of the best solutions for high gain and lightweight, easily stowable antenna
systems. The use of physical optics (PO) analysis provides the required
performance estimate accuracy. Almost all of the spacecraft reflector antennas
were either designed or analyzed using PO, and the measured performance is
within a few percent of the calculated values.

In addition to PO, there are many other techniques required to completely
design and characterize the antenna system. Accurate programs to design and
analyze the feed horn, and transform far-field patterns to near field for use in
the PO analysis are required. Synthesis programs are used to determine the
reflector shape for maximum gain. The sections on PO analysis, Feed Horn
analysis, Spherical-Wave Analysis and Dual-Reflector Shaping are covered in
[1], but these concepts are so fundamental they are also included in this
reference for completeness. Tools to design and analyze frequency-selective
surfaces are also needed for use in multi-frequency systems. And, programs to
characterize the effect of a mesh surface for a lightweight deployable antenna
are also required. The basic mathematical details of each of these techniques are
given in this section with examples of their use sprinkled throughout the book.

1.2.1 Radiation-Pattern Analysis

Physical optics (PO) is by far the most important analytical tool, and it is
used to calculate the scattered field from a metallic reflecting surface—in this
case, a reflector antenna. Electrical currents, which excite the scattered field,
are induced on the conducting surface by an incident wave assumed to be of a
known amplitude, phase, and polarization everywhere in space (from a feed or
other reflecting surface, for example). The PO approximations to the induced
surface currents are valid when the reflector is smooth and the transverse
dimensions are large in terms of wavelengths. The closed reflecting surface is
divided into a region S, which is illuminated by direct rays from the source

(“illuminated region”) and a region S,, which is geometrically shadowed

(“shadowed region™) from direct rays from the source (Fig.1-1). The PO
approximations for the induced surface current distribution are

Jo= 2((”XHinc) on (1.2-1)
Jy= 0 on S,

where 7 is the surface normal and H,;, . the incident field. The expressions are

then inserted into the radiation integral [5] to compute the scattered field.
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Fig. 1-1. The physical optics approximation:
(a) original problem and (b) approximation.

Rusch and Potter [6] provide a good introduction to the early techniques
used for analyzing the reflector antennas of the Deep Space Network (DSN).
More recently, due primarily to the orders-of-magnitude improvements in
computer speed and memory, a very simple but extremely robust algorithm has
emerged as the computer program of choice for computing the PO radiation
integral. The algorithm is documented in [7 and 8], but because of its extreme
importance and to provide a fairly complete reference, it is repeated here.

One of the simplest possible reflector-antenna computer programs is based
on a discrete approximation of the radiation integral. This calculation replaces
the actual reflector surface with a triangular facet representation so that the
reflector resembles a geodesic dome. The PO current is assumed to be constant
in magnitude and phase over each facet, so the radiation integral is reduced to a
simple summation. This program was originally developed in 1970 and has
proven to be surprisingly robust and useful for the analysis of reflectors,
particularly when the near field is desired and the surface derivatives are not
known. The initial limitation to small reflectors was primarily due to the speed
and memory limitations of the then-existing computers.

Two improvements significantly enhanced the usefulness of the computer
program: The first was the orders-of-magnitude increase, over time, in
computer speed and memory, and the second was the development of a more
sophisticated approximation of the PO surface current, which permitted the use
of larger facets. The latter improvement is due to the use of a linear-phase
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approximation of the surface current. Within each triangular region, the
resulting integral is the two-dimensional Fourier transform of the projected
triangle. This triangular-shape function integral can be computed in closed
form. The complete PO integral is then a summation of these transforms.

1.2.1.1 Mathematical Details. The PO radiation integral over the reflector
surface, X, can be expressed as [8]

H ! ML SR 1.22
N=-— +—|RxJ(r s' 2-
(1 fo(j R) (N (122)

in which r designates the field point, r’ the source point, R = |r — 1’| is the
distance between them, and R = (r — r')/Ris a unit vector.

For the purpose of analysis, the true surface, Z, is replaced by a contiguous
set of triangular facets. These facets, denoted Aj, are chosen to be roughly equal

in size with their vertices on the surface, X. Figure 1-2 shows a typical facet and
its projection onto the x-y plane. Let (xj, yj, zj) represent the centroid of each

triangle where the subscript i = 1, -+, N is associated with a triangle. Then, the
field obtained by replacing the true surface, X, by the triangular facet
approximation is

Field Point
P(xy 2)
y
,_.
/— Surface, X
/N e ~
/ AY
!
/ \
! \
] 1
I 1
z F I
—_— _II' !
:ZI:Z::J,
Triangular
Facet 4 Projected
Source
Point Facet A'j
oin Feed Point

Fig. 1-2. Reflector-analysis coordinate systems and a
typical triangular facet.
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1 N . 1 ~ /e—ij .
HiN=-_ ,ElfA;(ﬂHE)RXJ(r) = ds (1.2-3)
=

In Eqg. (1.2-3), J is now the equivalent surface current evaluated on the
triangular facets. Since the triangles are small, it is expected that R and R do
not vary appreciably over the area of a given facet. Thus, let ﬁi and Rj be the
value obtained at the centroid (Xj, yj, zj) of each facet and approximate
Eq. (1.2-3) by

N
1 Lo 1]a
H(r)=ﬂi=21 Jk+ﬁ}R,~xT,-(r) (1.2-4)
o IkR
T(0= [, 3i(r) s (1.2-5)

Assume that the necessary transformations have been performed so that the
incident field, Hg is given in terms of the reflector coordinate system. Then

J;(r)y=2n; x H(r) (1.2-6)

Next, assume that the incident field can be represented by a function of the
form

e_jer
Hg=h(r)"— (1.2-7)
4 i
where rg is the distance to the source point and rg; is the distance from the
triangle centroid to the source point. Then, Eq. (1.2-5) can be written

T(ry = 200 kR g (1.2-8)
ZnRirsi Ai

Making use of the Jacobian and approximating
1
R(x,}’)+rs(xa)’)=;(ai—M,'X—V,'y) (12'9)

in which &;, uj, and v; are constants, the expression can be rewritten as
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< PN )i [ gy 210
2J'CRl'I"Si ! A;

where the surface normal is
Ni = _)A(fxi - 9fyi + 2 (12'11)

and the Jacobian is

2 > 1/2
I, =|N,~|=[fxi e 1] (1.2-12)

It may now be observed that this integral is the two-dimensional (2-D) Fourier
transform of the i" projected triangle A}, expressed as

Suv)= A,'ej(”x’ ) dx'dy’ (1.2-13)

and can be computed in closed form as described in [9]. The full radiation
integral is the sum of all the transforms of the individual triangles.

1.2.1.2 Application to Dual-Reflector Antennas. The PO integration
methodology is incorporated in a sequential fashion for the analysis of a dual-
reflector antenna system. Initially, the feed illuminates the subreflector, and the
currents on the subreflector surface are determined. Subsequently, the near
fields scattered from the subreflector are used to illuminate the main reflector,
and its induced currents are determined. The main reflector scattered fields are
then determined by integrating these currents.

Many coordinate systems are required to allow flexibility in locating and
orienting the feed, subreflector, main reflector, and output-pattern generation.
The relation among the various coordinate systems is depicted in Fig. 1-3
where (Xg,Yr,zr) is the feed coordinate system, (Xs,ys,zs) is the subreflector
coordinate system, and (Xm,Ym,Zm) 1S the main reflector coordinate system.

1.2.1.3 Useful Coordinate Transformations. In the discussion of the
preceding sections (1.2.1.1 and 1.2.1.2), the analysis is performed using two
distinct coordinate systems: reflector and feed coordinates. In addition, it is
sometimes convenient to display the computed patterns in yet another
coordinate system. Consequently, one must know the transformation equations
that permit coordinates and vectors described in one coordinate system to be
expressed in terms of some other coordinate system. The transformation may
require both translation and rotation. The required transformations are
described below. They are the Cartesian-to-spherical transformation and
coordinate rotations using Eulerian angles.
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Main
Reflector

XF

Feed

Fig. 1-3. Dual-reflector coordinate systems.

The Cartesian-to-spherical transformation is conveniently summarized in
matrix form. With the Cartesian components of a vector, H, denoted
(Hx,Hy,HZ) and the spherical components (H,,Hg,Hd,), one finds that the

transformation is

H, sinBcos¢ sinOsin¢g cosO |[H,
Hg|=|cosBcos ¢ cosBsin¢g -sinb||H, (1.2-14)
H, —sin ¢ cos ¢ 0 H,

The inverse transformation is just the transpose of the above matrix.

Rotations are handled by the use of the Eulerian angles (a, S, 7). These
angles describe three successive rotations that bring one Cartesian system into
alignment with another. Let the two systems be denoted (xy,y;,z;) and

(x5,¥2,2) . As illustrated in Fig. 1-4, the angles are defined as follows:
o describes a positive rotation about the z; axis, which brings the x; axis

into the x' axis aligned with the line of nodes (the line of intersection
between the (x;, y;) and (x,, y,) planes)

B describes a positive rotation about the line of nodes (the x' axis) that
brings the z; axisto z,

y describes a positive rotation about the z, axis, which brings the x' axis
to the x, axis.

The phrase “positive rotation” means the direction of increasing angular
measure as defined by the right-hand rule with respect to the axis about which



12 Chapter 1
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Line of Nodes ™ X

Fig. 1-4. Euler-angle definitions.

the rotation occurs. Each of the rotations just described is performed using the
standard rotation of coordinate formulas of plane analytic geometry.

When these expressions are written in matrix form and applied successively
as described above, one obtains the following matrix equation that represents a
general three-dimensional (3-D) rotation of coordinates.

X Ay A Az |x
ya| = (A A Axp| (N (1.2-15)
%) Az Ay Az |7

where the individual matrix elements are

Ay = cosycos a-sinycos Bsin a
A, = cosysin a+sin ycos fcos a
Ajz = sinysing

A,y = -sinycos a-cos ycos fsin o
Ay, = -sinycos a+ cos ycos 3 Cos o
A,z = cosysinp

Az; = sinfcosy

A3, = -sinfcos a

Ag3 = cosp
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The inverse transformation is just the transpose of the matrix given above.
Although the formulas are presented in terms of coordinate

transformations, the transformation matrix is equally valid for the Cartesian

components of a vector. Thus, the components of a vector, H, transform as

Hy, Al A A || He
Hyo| =|A A Ax||Hy,

H,» A3 Az Asz||H

(1.2-16)

Further information can be found in [10].

1.2.1.4 A Numerical Example of Radiation-Pattern Analysis. In the 1980s, a
FORTRAN program was written to perform the linear phase calculations
indicated above. The program was extensively verified by comparing the
measured data, for example, [11], and many other computer codes.

A simple but interesting example is that of an ellipse, shown in Fig. 1-5.

The projected aperture of the ellipse is about 3m. In the x, axis, the

illuminated function is a cos**@ pattern function (22.3-dB gain), and the
frequency is 31.4 GHz. The ellipse is about 3504 along the major axis.
Figure 1-6 compares the constant-phase approximation for three different grid
densities: approximately 4000, 10,000, and 23,000 triangles. This illustrates a
general trend of the method; that is, depending on the size of the triangles, there
is an angular limit over which the solution is valid. Figure 1-7 compares the
linear-phase approximation with the constant-phase approximation for the
4000-triangle case and demonstrates that the angular range is larger with the
linear-phase approximation.

1.2.2 Feed-Horn Analysis

An equally critical aspect of the analysis of reflector systems is the ability
to accurately compute the radiation pattern of the feed. More details on the
design of the feeds will be given later, but the analysis technique for computing
the radiation patterns of the feed is summarized below.

Two types of feed horns possessing equal E- and H-plane patterns are
commonly used. The first is the dual-mode feed horn [12], and the second is the
corrugated feed horn [13]. In the dual-mode horn, a dominant mode circular
waveguide is connected to another guide of slightly larger diameter, where
modes up to transverse magnetic (TMy) may propagate; the higher order
modes being generated by the step transition. The step size is chosen to
generate the precise amount of TMy; mode from the transverse electric (TEy;)
mode so that when the two modes travel through the flared horn section that
follows, the E- and H-plane patterns are equalized. The bandwidth of this feed
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Fig. 1-5. Ellipse geometry.

horn is limited since the two modes must arrive at the horn aperture in phase,
and the two modes have phase velocities that vary differently with frequency.

In the corrugated feed horn, the single-mode smooth-wall waveguide is
connected to a corrugated waveguide that supports only the hybrid (HE1)
mode. Some matching between the waveguides is provided by gradually
changing from A/2 slot depth to A/4 slot depth in a short transition region.
Throughout the transition region, only the HEj; corrugated waveguide mode
may propagate, and the E- and H-plane radiation patterns of this mode become
nearly equal when the balanced condition is reached (slot depth = ~A/4). The
bandwidth of this horn is larger than that of the dual-mode horn because the
transverse electric field patterns and, hence, the radiation pattern of the HE;;
mode are relatively insensitive to small changes in slot depth around the
balanced condition (slot depth = ~A/4). After the HE;; mode is established in
the single-mode corrugated waveguide, the guide is gradually flared, without
changing the slot depth, to the required aperture size.

The corrugated section is analyzed using a computer code developed by
Hoppe [14-16]. The analysis follows the method of James [17], expanding the
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Fig. 1-6. Ellipse example: constant-phase approximation for offset plane.

fields inside each fin and slot in terms of circular waveguide modes, and
matching the fields at each slot—fin boundary. All of the possible propagating
modes (as well as a sufficient number of evanescent modes) are matched at
each boundary, with results for successive edges and waveguide lengths
cascading as the analysis moves through the device. In this way, the
interactions between the fields of nonadjacent as well as adjacent slots are taken
into account. The result of the calculation is a matrix equation relating the
reflected and aperture modes to the input modes.

If a; is a vector containing the power-normalized amplitudes of the input
modes, then we may calculate the reflected modes, by, and the aperture modes,
b,, using

by = [$2] & (1.2-17)

by = [S11] a (1.2-18)
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Fig. 1-7. Ellipse example: constant versus linear phase for offset plane.

Here, [S21] and [Sy,] are the scattering matrices resulting from the computer run.
See the appendix of [17] They depend only on frequency and device
dimensions, not input modes. We may therefore specify any input vector a,
and calculate the reflected and aperture fields. Using the normalized amplitudes
calculated above, and the normalized vector functions giving the field
distributions for each mode, we find the aperture field Eg. The far field is then

calculated by the method described by Silver and Ludwig [18,19].

EC=;_rlc ffs(_j”w (e HB)¢+(ﬁXEB)XV¢) ds (1.2-19)

where
Ep = aperture electric field
Hp = aperture magnetic field
n = unit vector normal to aperture surface
ds = incremented area on aperture surface
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2af angular frequency

= frequency

= free-space permeability

gradient operator

= ekr/y

= 2m/ Ao wave number

= far-field point distance from origin (spherical radius)

When Ep and Hp are represented in terms of circular waveguide modes,
the resulting integrals have already been evaluated by Silver [18]. Therefore,
given an input vector and the scattering matrix, we determine the aperture
modes and composite far-field patterns. A spherical-wave analysis is then used
to compute the feed-horn near-fields pattern for use in the PO software.
Throughout the analysis, care must be taken to ensure proper normalization of
the field amplitudes in terms of power. The smooth wall conical feed horn is
modeled with the same software by approximating the horn taper with small
steps and zero-depth corrugated slots.

The mode-matching technique for analyzing corrugated horns yields
excellent agreement with the measured patterns—so much so, in fact, that if the
computed and measured patterns do not match, it is most likely due to
measurement and/or manufacturing errors. There is a recent example of a fairly
complicated X-/X-/Ka-band horn described in [1] and [20] that shows excellent
agreement between measured and calculated feed patterns. There are also
several very good examples given in later chapters with probably the most
complicated horn being the Cassini antenna three-frequency horn described in
Chapter 5.

T Te q= Te
|

1.2.3 Spherical-Wave Analysis

Spherical-wave-expansion coefficients are frequently used in the analysis
of reflector systems. Their basic purpose is to transform far-field patterns to the
near-field so that PO may be used for reflectors in the near field of their
illumination source.

The theory of spherical waves is described in [21] and will only be briefly
outlined here. Any electromagnetic field in a source-free region may be
represented by a spherical-wave expansion. In general, the expansion must
include both incoming and outgoing waves. If the field satisfies the radiation
condition, only outgoing waves will be present, and the expansion will be valid
outside the smallest sphere enclosing all sources (the sphere center must be at
the coordinate origin used for the expansion). The radial dependence of the

spherical waves is then given by the spherical Hankel function h,f(kR). Another

common case is an expansion valid inside the largest sphere enclosing no
sources. In this case, the incoming and outgoing waves are present in equal



18 Chapter 1

amounts, producing a radial dependence given by the spherical Bessel
function j, (kR) .

Although the spherical-wave expansion can be applied to either of these
two most common cases, the version used most typically for antenna analysis
assumes outgoing waves.

In either case, the input data that are used to specify the field is the
tangential E-field on the surface of a sphere. For the first case, the data-sphere
radius must be greater than or equal to the radius of the sphere enclosing the
sources. For far-field data, the data-sphere radius is considered to be infinite.
For the second case, the data-sphere radius must be less than or equal to the
largest sphere enclosing no sources, and must be greater than zero.

The maximum value of the Hankel function index that is needed to closely
approximate the field is roughly equal to ka (ka + 10 is typical, but in some
cases a lower limit will work), where a is the radius of the sphere enclosing all
(or no) sources for the first (and second) case, respectively.

Input data is specified on a grid of points defined by the intersection of
constant contours of 6 and ¢. The amplitude and phase of Eq and Ej are given

at each point. The minimum number of 6 values is roughly 1.2 times the
maximum value of n.

The azimuthal dependence of spherical waves is given by sin(m¢) and
cos(m¢) . In general, m runs from 0 to the maximum value of n. As is often the
case, symmetry can be used to reduce the number of azimuthal terms. A conical
feed radiates only m = 1 modes, and reflection from a body of revolution will
maintain this behavior. There can be even and odd ¢ dependence, but quite
often only one will be present. For the even ¢ dependence, E, can be expanded
in only sin(m¢) terms and E, in onlycos(m¢) terms. For the odd case, this is

reversed. The minimum number of ¢ values for the data sphere is, in general,
2M + 1, where M is the maximum value of m.

The output of the computer program is the set of spherical-wave-expansion
coefficients. These coefficients may then be used to compute the field
anywhere within the region of validity. Therefore, the essential utility the
program is to take data consisting of the tangential E-field on a sphere (whose
radius may be infinite), and provide the means of computing the field—all three
components of E and H—at any other point in the region of validity.

The computer program used is patterned after that in [22].

1.2.4 Dual-Reflector Shaping

The simplest form of a dual reflector system, the Cassegrain, has a
parabolic main reflector and a hyperbolic subreflector. The efficiency of these
reflectors is primarily determined by (a) the ability of the feed system to
illuminate only the reflectors while minimizing the energy that radiates
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elsewhere and (b) the ability of the feed plus the subreflector to uniformly
illuminate the parabola. Item (a), above, is termed “spillover efficiency” and (b)
“illumination efficiency.” The illumination efficiency is 100 percent when the
energy density on the entire main reflector aperture is a constant.

Feed-horn patterns always taper gradually from their central maxima to
nulls. If all this energy is intercepted by the reflector (for maximum spillover
efficiency), the illumination is far from uniform, and the illumination efficiency
is very poor. Consequently, any attempt to obtain nearly uniform illumination
will result in a great loss of energy in spillover. Therefore, a compromise must
be made. A common choice for both a prime focus system and the Cassegrain
system is a 10-dB taper of the illumination pattern at the parabolic edge. This
selection results in a combination of spillover and illumination efficiency of
from about 75 to 80 percent.

It is possible, however, to change the shape of the two reflectors to alter the
illumination function and improve efficiency. This methodology is termed dual-
reflector shaping and was first introduced by Galindo [23], who demonstrated
that one could design a dual-reflector antenna system to provide an arbitrary
phase and amplitude distribution in the aperture of the main reflector. Thus, if
one chose a uniform amplitude and constant phase, 100 percent illumination
efficiency could be achieved. With the feed pattern given, the subreflector size
would be chosen to give minimal spillover.

1.2.4.1 Theoretical Solution for the Symmetric Case. The complete solution
can be found in [23 and 24], and only the uniform aperture case is summarized
below.

The geometry of the symmetric dual-reflector system is shown in Fig. 1-8.
Due to circular symmetry, the synthesis reduces to the determination of the
intersection curve (of the surface) with the plane through the axis of symmetry,
that is, the x,y plane.

The synthesis method uses the analytical expressions of geometrical optics
(GO) principles together with the reflector geometry to develop a pair of first-
order, nonlinear ordinary differential equations of the form

ﬂ: f(x,y) (12'20)
dx

which leads to cross sections of each reflector when subject to boundary
conditions such as

Y(x = Xpax)= 0 (1.2-21)

which are then solved by a high-speed digital computer.
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Line of y
Symmetry a
Fig. 1-8. Coordinate system for shaping.

The optical principles that are used to develop the required equations are
that (a) the angle of incidence is equal to the angle of reflection (Snell’s Law),
(b) energy flow is conserved along the ray trajectories, and (c) surfaces of
constant phase form normal surfaces to ray trajectories.

The incident field is assumed to have a spherical-phase function, that is, a
phase center, and a power-radiation pattern F(6). For uniform phase in the
aperture, the path length, r+r'+r", must remain constant for all 6. Also, the
amplitude function in the aperture I(x) must also be equal to a prescribed
distribution (constant for maximum peak gain).

The equation for equal path lengths resulting in the phase front is obtained
from trigonometry:

rey+ X200 o Constant) (1.2-22)

sin f3

where (x,y) and (r,6) are the coordinates of points on the main reflector and
subreflector, respectively.
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The application of Snell’s law to the two surfaces defines a relationship
between the angles shown and the first derivates (slopes) of the surfaces. These
are

Ldr _n9*8 (1.2-23)
rdo 2

D _ P (1.2-24)
dx 2

Since the dual-reflector system is symmetrical about the y-axis, the total
power within the increment 40 of the pattern F(8) will be F(6)2xsin6d6.
Similarly, the total power within the increment dx of the main antenna aperture
is I(x)2mdx, where 1(x) is the illumination function of the antenna aperture.
Making I(x) constant and equating the total power from 6=0 to angle 6 to that
within x, and normalizing by the total power, one obtains

i g F(6) sin 646
x2 = x2. : (1.2-25)
1l o Max F(6) sin 6d6

These four equations now have five dependent variables (x, y, r, 6, and )
and can be solved to provide equations for the surfaces. This procedure yields
an optimum-gain antenna. The antennas used on the Voyager, Galileo, and
Cassini spacecraft described in Chapter 5 were all dual-shaped systems.

1.2.4.2 Offset-Shaped Reflector Antennas. The formulation shown in Section
1.2.4.1 (above) is for circularly symmetric reflector geometries. The exact
solution has also been developed for offset geometries [25,26]. The offset
geometry will have higher efficiency than the symmetric geometry because the
central blockage due to the subreflector can be eliminated. In the early 1980s,
an antenna with an offset geometry was designed and built that had an
efficiency of 84.5 percent—the highest ever recorded [27].

1.2.5 Dichroic Reflector Analysis

The ability to transmit and receive simultaneously at multiple frequency
bands is an important requirement for deep-space communications. It is usually
accomplished by using either a dual-band feed horn or separate feed horns and
a frequency selective surface (FSS), typically referred to as a dichroic reflector.
Dichroic reflectors are important components for both ground and spacecraft
antennas. The most frequently used type of surface for ground antennas is a flat
metal plate that passes the higher frequency and reflects the lower frequency.
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The analysis for those types of surfaces is given in reference [1]. However, for
spacecraft antennas, the typical use is for a dichroic subreflector that reflects the
higher frequencies and passes the lower frequencies. Examples are the
Voyager, Galileo, and Cassini (Chapter 5) high-gain antennas. As these
dichroic surfaces play an important role in the telecommunications antennas,
this section presents a typical technique for analyzing them.

1.2.5.1 Theoretical Formulation. Dichroic surfaces are analyzed using a
combination of Floguet modes and the method of moments. The theory is well
documented in references [28-30] and will only be summarized here. In
particular, the following is derived from reference [28]. Consider the printed
dipole array shown in Fig. 1-9. The surface is assumed infinite in the xy plane.
Expanding the fields in the three regions in Floquet modes and applying the
appropriate boundary conditions allows the development of an integral equation
for the unknown current distribution J(x,y) on the dipoles. If J(x,y) is

approximated as follows:

Medium 3 ) )
Dielectric (g,)

i

4 Medium 2 .77

X

-—.-IU)-.‘—-

Plane of
Reflection (XZ)

E TM Incident Wave

Fig. 1-9. Geometry of the dichroic surface.
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N
J(xY) = Y enhy (x,9), (1.2-26)

n=1

where the functions 4, (x,y) are complete and orthonormal over a crossed

dipole and N is finite for computability, then the integral equation is easily
solved using the method of moments. The resulting system of equations is:

N
= e a2 222 (1.2-27)

Kimpg " 8i ™ kpq)’empq 'gn(kpq)
eq ’

where a time-dependence exp(jwr) is assumed, m =1 corresponds to the TM
mode, m =2 corresponds to the TE mode, and

g1(kpg)= [ C y)exp(jK g p)dx dy, (1.2-28)
d = array spacing,
P = XX+ )Y,
K,y = (kosin@cos¢+x/§np/d)£+(k0sin@sin¢+%+2\/j% ¥,
k() = 27[/)\,0,
Ao = free-space wavelength,
(6,9) = direction of incidence,
b, = incident field magnitude of mth mode,
Kipg = kpq/‘kpq"
K2pg = 2XKipg:
- o1 1-R
eq _ air diel mpq
nmpq - 77mpq 'H?mpq (m )
k
Mpg = .

Vpq
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_ Vpq"l
Mpg = 77
n = 4Je/u,e,u are the permittivity and permeability of medium,
k = propagation constant of the medium,
) ,\1/2 ) 5
Vpq =(k "kpq‘ ) , k >‘kpq‘ '
172
_ 2 2 2 2
——j(‘kpq‘ —k ) , k <‘kpq‘,
n diel_77 air
— Impq mpq ;
Rupg = diel air %P (‘f 2V pgS )
nmpq +77mpq
) air eq
R slab _ nmpq _nmpq
mpq - eq
nmpq

Once we select a suitable set of functions h,,, the unknown coefficients ¢,
can be easily obtained by solving Eq. (1.2-27). The reflected and transmitted far
fields contain only the propagating Flogquet modes for which y,,, is real. In a
suitable design, by using a small array spacing, the higher order Floquet modes
(|p|>0.]g|>0), which correspond to the grating lobes, are made evanescent.

Thus the reflection and transmission coefficients are computed from the
following expressions:

2 N
lab 1 " A
R(0) = E Ruo0” b =—5——— Ecngn(koo)"fmoo Km00
q
m=1 d Mmoo ' o1
(1.2-29)
2 " ) N
TO) = D moo(1+ Rno0™ Jom =522 0 (ko0) Emon Koo
d q
m=1 Mmoo~ p=1

where

. i diel . i diel
exp{](ypqalr _qu 1€ )S} " Rmpg exp{](}’pqalr +)/pq 1€ )s}
t =
mpq 1+ Ripg '

b =1, by =0 for TM incidence,
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and
by =0, by, =1 for TE incidence.

1.2.5.2 Examples on a Flat Dielectric Sheet. Most of the applications for
telecommunications require circular polarization; therefore, an array of crossed
dipoles is a popular choice for the element. The array becomes reflective near
the dipole resonance and is almost transparent at lower frequencies. In practice,
these surfaces are often constructed by printing metal dipoles on supporting
dielectric layers. The exact reflection and transmissions characteristics,
therefore, depend on the length, width, and spacing of dipoles; the dielectric
constants; and the thickness of the layers. The reflection coefficient is also a
function of incident angle. When the application is a dichroic subreflector, there
is a range of incident angles on the surface. There are two ways to handle the
varying incident angles, by redesigning the element to be reflective at the given
incident angle, or, more simply, selecting dimensions for the element that work
over the entire range of incident angles. Since the exact resonance frequency is
fairly sensitive to the parameters and some of the parameters are not accurately
known (dielectric constant of the materials, for example), a flat-sheet test
sample is sometimes manufactured and tested to verify the design. A
comparison of the calculated and measured reflection coefficient is given
below.

A computer program was written for calculating the reflection coefficients
for a dipole element using a Fourier expansion in Eg. (1.2-26). Upon
comparison with the experimental results, it was found that a three-term
expansion of the current on each dipole was sufficient. Thus, for the crossed
dipole at the origin we have

h, ﬁ\/%cos(nry/L), h, = ﬁ\/%sin(%cy/L),

h; = )A’\/ZCOS(&T)’ /L), hy= J?\/Zcos(fux/L),
WL WL

hs = )2\/2 sin(2mx /L), hg= )2\/zcos(3n:x/L),
WL WL

The computed reflection coefficient for L=0.97 cm, d=0.92 cm, and
W =1.016 mm is shown in Fig. 1-10. Fig. 1-10(a) assumes an absence of the
dielectric (g; =1, s=0), and Fig. 1-10(b) is with a sheet of dielectric constant
g =4.25 and thickness s=0.127 mm. Figure 1-10(c) shows the measured
reflection coefficient of an experimental surface with the same parameters as
used in the computation of the curves of Fig. 1-10(b). This experimental surface
is shown in Fig. 1-11, and the method of measurement is described in [28]. As
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Fig. 1-11. Experimental dichroic surface of copper dipoles printed on 5-mil Kapton
sheet (s = 0.127 mm).

can be seen in Fig. 1-10, the theoretical results are in close agreement with the
experiment. A major influence of the dielectric sheet appears to be in lowering
the resonance frequency at which the surface becomes a perfect reflector.

1.2.6 Mesh Analysis

The use of a mesh for the surface of a reflector antenna is a very attractive
solution for large deployable antennas such as those on the Tracking and Data
Relay Satellite System (TDRSS) and the Galileo spacecraft. These mesh
surfaces are typically constructed from gold-plated molybdenum wires, which
are woven in a periodic pattern. A commonly used pattern is the tricot knit. The
fineness of the wires (typically 1.2 mil [31 um] in diameter) and the complexity
of the weave made the problem of an exact numerical diffraction analysis quite
formidable. Nonetheless, Imbriale, Galindo and Rahmat-Samii [31] solved the
problem using a Floguet-mode expansion to establish an integral equation for
the mesh wire currents that was solved using the method of moments technique
with piecewise triangular basis functions. It was observed that it was necessary
to give special attention to the junction treatment among different branches of
the mesh configuration. For analytic convenience, the mesh was modeled as flat
strips on a plane surface. This does not limit the validity of the results since the
wire diameters are so small that there are only longitudinal currents. An
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equivalent radius of one-fourth the strip width is used to equate round wire and
flat strips.

1.2.6.1 Theoretical Formulation. Since the tricot weave is essentially periodic,
Floguet’s theorem can be applied in the analysis of a plane wave incident upon
the mesh. Currents induced along the strip are modeled as a series of
overlapping triangular basis functions (splines)—the coefficients of each
triangle to be determined by inversion of the matrix obtained when tangential E
is set to zero on the flat strips.

The multiwire junction points are carefully modeled so that the currents are
naturally continues through the junctions and no additional conditions are
necessary. Conditions of good electrical contact, no contact, or partial contact at
the junctions are included in the model. Finite conductivity can be included as
well.

The formulation follows very closely the development described in the
previous section on dichroic surfaces. In fact, using Floquet’s theorem and the
method of moments results in the identical set of equations to be solved, i.e.,
Eq. (1.2-27). The differences stem from the different basis functions used in the
formulation and the fact that medium 2 is air instead of a dielectric. However, if
the dielectric constant is included in the formulation, the resulting computer
code can also be used to analyze dichroic surfaces. In addition, it allows
experimental verification of the computer code by comparing with various flat-
strip meshes printed on a dielectric sheet.

As indicated above, the reflection and transmission coefficients are
computed using Eq. (1.2-29). The major difference in the formulation is the
representation of the currents to be used in Eq. (1.2-26).

The actual curved strip is represented as a series of straight segments. The
currents are modeled as piecewise triangular along the strip and constant in the
transverse direction. The geometry is shown in Fig.1-12. In particular the
currents on the nth segment are

ror "/(x’+l) ’ w , W
h,(x\y)=x'"—=, -Il=x'=0, ——=y'=s—
n(X5y) 'l > y 2
(1.2-30)
ry ’\/(l_x’) ’ w , W
h (x,y)=x'—"-=, O=sx'=sl, ——=sy'=s—
(X5 i > y 2

where
x=x,+x'cosW-y'sin¥, y=y, +x'sinW+y'cosW.

By substituting Eq. (1.2-30) into Eq. (1.2-28) and integrating, we obtain
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1.0

Fig. 1-12. Basic function geometry: (a) geometry
of nth segment and (b) triangular basis function.

- +
gnpg = gnpq +gnpq

where
"
PO [ ) P il W
" 7’ Z z2| Yw !
2
n
g+ =ﬁ'ejc 1 _Ll —jlz_1 2 !
" 2z 2
2
with

Z=kycosW+ky,sin¥,

V=-k,sinW+ky,cosW,and C=kyx, +k,y,.

29

(1.2-31)
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The complete solution for reflectivity is thus obtained by first using
Eqg. (1.2-31) and Eq. (1.2-28) and solving for the unknown coefficients ¢,
using Eq. (1.2-27), and then using the ¢, in Eq.(1.2-29) to compute
reflectivity.

At the bends in the wire and at wire junctions, special treatment is required
to insure that the analytical model provides for the vector continuity of current
from one segment to the next segment.

If the vector continuity is not provided, then the current along the strip
“senses” a termination of the conductor, and the coefficient of the end point
basis function goes to zero.

Setting tangential E equal to zero is the only constraint required if current
continuity is insured in the vector sense by the addition of a “wedge” current as
illustrated in Fig. 1-13.

The wedge current in Fig. 1-13a is represented by

-xsin®¥ +ycos ¥

h (1.2-32)

n
w

This is a circular current of constant amplitude as depicted in Fig. 1-13(a). We
need to evaluate g,,,, for this segment. The result is

e/ - JjZwe

Z2

JjZw ~1

AW (1.2-33)

g = e f‘Pn -xsinW +ycos W
Pd IIIn—l w

where the integration is carried out numerically with C and Z is as described
above.

At the junction of more than one strip, a superposition of all possible wedge
currents is required. For example, if two strips cross and make contact, then this
junction is treated as a four “port” with six interconnecting wedges necessary to
permit current flow from any given strip to any other strip. In general, for N’
strips at a common junction point,

N’(N’—l)]

[(N’-1)+(N'-2)+---]=[T

wedge currents are required.

Figure 1-13(b) illustrates a crude schematic of three wire strips meeting at a
junction. Hence N'=3 and three connecting “wedge” currents are required.
Since wire 3 connects straight into wire 2, one wedge current, I5,, degenerates

into a straight connecting section. Current I., and I are circular currents.
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Fig. 1-13. Wire junction geometry: (a) wire bend geometry,
(b) three strips meeting at a junction, and (c) General
three wire junction with connecting straight sections.
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In order to use simple cylindrical currents in the wedge segment, as
described earlier, it is necessary to introduce some additional “straight
connecting segments” into the geometry. This is illustrated in the three-wire
junction of Fig. 1-13(c). The lower left of the figure contains a simple two-wire
junction (i.e., a bend) wherein the current wedge is easily introduced and
centered at point O in the figure.

For the three-wire junction, two straight segments must be introduced in
order to use circular wedge currents. For an N’ wire junction, we need (N'-1)
straight wire connecting segments at the junction. Figure 1-13(c) indicates the
required two straight segments. The cylindrical wedge currents are centered at
points 1, 2, and 3 (Py, P,, P3) in the figure. The Bupg for these segments are

readily evaluated. It is not necessary to introduce an additional unknown for
each connecting straight segment.

A number of examples, including experimental results to validate the
theory, are given in reference [31].

1.2.6.2 Galileo Mesh Calculations. The mesh that was used on both the
Galileo high-gain antenna and the TDRSS single access antennas was a
complex tricot knit, with 10 openings per inch (4 openings per centimeter) and
a 1.2-mil (31-um) diameter wire. Since the analysis uses a flat strip model and
the actual mesh is composed of round wire, it was necessary to demonstrate
equivalence between wires and strips. It was shown in [31] that the equivalent
radius is one-fourth of the strip width. Using the equivalent radius and the
complex mesh geometry (shown in Fig. 1-14), a computation for the Galileo
type mesh is shown in Fig. 1-15, along with the measured reflectivity at 8 and
15 GHz. In Fig. 1-15 it was assumed that all the junctions make perfect contact,
as is the case if there is no corrosion or oxides on the wires. It has been
experimentally observed, that under certain unfavorable conditions, a loss of
mesh reflectivity of several dB can occur. This has been attributed to lack of
electrical contact at the junctions and occurs in part because the tricot knit has
wires predominantly in one direction. This phenomenon is further discussed in
[31].

1.3 Wire Antennas
William A. Imbriale

Since the dipole antenna is a very simple and lightweight antenna, many of
the early spacecraft made use of such antennas (Explorer | for example). For
some of the same reasons small rovers and instruments also make use of simple
wire-type antennas. For completeness on the analysis tools, this section
provides a short summary on the analysis of wire antennas. There are many
papers and textbooks that describe the use of the method of moments for the
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Fig. 1-14. Complex tricot knit geometry.

solution of wire antennas, with [32] probably the classic reference. The
following formulation follows the development given in [33] and [34].

1.3.1 Theoretical Formulation

In the moments solution the method of subsectional basis functions is
applied with both the expansion and testing functions being sinusoidal
distributions. This allows not only a simplification of near-field terms but also
the far-field expression of the radiated field from each subsegment, regardless
of length. Sinusoidal basis functions are extremely useful for the analysis of
large arrays of dipoles since the use of one subsegment per dipole is equivalent
to the induced electromotive force (EMF) method of calculating mutual
impedances and therefore give a physically meaningful result. For an array of N
dipoles, this allows the use of the minimum matrix size of N x N to achieve a
good “first order” approximation to the solution.

1.3.1.1 Basic Theory. Figure 1-16 shows a straight section of wire of circular
cross section and defines the coordinate system. The wire with radius a extends
from z = 0 to z = L along the z-axis. It is assumed that the radius is small
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Fig. 1-16. Straight wire and
coordinate system.

compared to a wavelength, but the ratio of a to L need not be small. The only
significant component of current on the wire is the axial component, which can
be expressed in terms of the net current I(z) at any point z along the wire. The
current distribution is modeled as an infinitely thin sheet forming a tube of
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radius a, with the density of current independent of the circumferential position
on the tube. An integral equation for the problem is given by

L{I(2)} =
o (1.3-1)

j(azoe) (a1 i), | exp(~ jkR)/R]-1(<')d'de = EX 2)

where Eé(z) is the z component of the impressed electrical field at the wire
surface, I(z’) is surface current density, §.dc represents the integration around

the circumference, R is the distance from the source point to the field point, and
L is a shorthand notation for the integral operator.

The integral equation is solved using the method of moments with
sinusoidal subsectional currents and Galerkin’s method [34].

Let the wire be broken up into N segments (each of length 2H, and let 1(2)
be expanded in a series of sinusoidal functions

N-1
1(z)~ Y 1,S(z=nH), (1.3-2)

n=1
where /,, are constants and

_ sink(H—|z|), |z|<H
S(Z)‘{o, <t

Substitute Eq. (1.3-2) into Eg. (1.3-1), multiply each side by S(z-mH),
m=1,2,---,N-1 and integrate from z to L on z. This results in the matrix
equation

[Z][1]=[V] (1.3-3)
where the elements of 7] are 1,,, those of [Z] are
Zyn = | OL S(z~mH)L{S(z - nH)}dz (1.3-4)
and those of [V] are
V, = f OL S(z-mH)EL(z)dz . (1.3-5)

Inverting the [Z] matrix to solve for [7] and substituting in Eq. (1.3-2) gives
the solution for the unknown current.



36 Chapter 1

In solving thin wire antennas, the integration around the current tube is
normally removed by replacing the integral with the value of the integrand at
one point. This then reduces the equation to a single integral and obviates the
singularity of the integrand, which occurs when the source and field points
coincide during the calculation of the self and first adjacent mutual terms. The
singularity is, of course, integrable; and by suitably expanding the integrand,
special series for these terms can be obtained and the integral performed in
closed form. However, many authors have used an “average” value equal to the
radius a. This approximation is described as assuming the current to be totally
located on the center axis and the distance a is used to represent an average
distance from the current filament to the true current surface. A thorough
discussion of this singularity and its effect on numerical convergence is given
in [33]. However, if the radius is sufficiently small and the number of
subsegments limited to the condition when a/H is small, then this
approximation is sufficient. The Z,,, term for an infinitely thin current filament

is given as

Hm+1 . . . . .
Zyyn =30 [ L= jexp(= kR, )/ Ry = jexp(- jkRy)/ Ry +2 jcoskH,,
m-1
(1.3-6)
-exp(- jkRy )/ Ro-sin] k(H,, ~2[)]z,

where R; and R, are the distances from the end points, and R, the distance
from the center of subsegment H,, to the field point on H,, when integrating
over subsegment H,,. For the self-term and the first adjacent subsegment

where the source and field terms coincide, the impedance term is computed by
separating the source and field E by the radius a.

1.3.1.2 Far-Field Evaluation. The radiation pattern of a wire antenna is
obtained by superposition of the fields of the many small subsegments with
sinusoidal current distributions. Utilizing the general expression for the electric
field of a subsegment of any half-length H oriented along the z-axis the far-
zone field is given by

N
E(9,¢) = jn(4 m)_l exp(—jkr)z 1,,[cos(kH cos 0) —cos kH |
n=1

-exp(jknH)/sinOug,

(1.3-7)

where 7 is the intrinsic impedance of free space and g is a unit vector.
The power gain pattern of the radiation field is
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- 2
8(0.9) = 470 |EO.9)| "/ By, (1.3-8)
where P, is the power input to the antenna

P, =Re[V][I*], (1.3-9)

m

where [V] denotes the transpose of [V], and * denotes conjugation.

1.3.2 Arbitrarily Shaped Wires and Wire Junctions

The procedure for solving arbitrarily shaped wires is similar to that used for
straight wire as the wire is divided into subsections, over each of which a
sinusoidal current distribution is assumed, and a generalized impedance matrix
[Z] obtained to describe interactions between subsections. The junction of two
or more straight segments can be thought of as the intersection of two or more
half subsegments superimposed on one another. Thus, Kirchoff’s current law is
not invoked at the junction; it is a consequence of Maxwell’s equations.

To complete the description of arbitrarily shaped wires we need to obtain
the mutual impedances between two full subsegments, between a full
subsegment and a half subsegment, and between two half subsegments. The
details for computing these impedance terms are given in [34].

1.4 Microstrip Antenna: Analysis, Design, and
Application
John Huang

1.4.1 Introduction

Since the invention of the microstrip antenna a half-century ago [35,36], the
demand for its application [37-43] has been increasing rapidly, especially
within the past two decades. Because of microstrip antennas’ many unique and
attractive properties, there seems to be little doubt that they will continue
finding many applications in the future. These properties include low profile,
light weight, compact and conformable to mounting structure, easy to fabricate,
and integratable with solid-state devices. Although, the microstrip antenna is
well known for its shortcoming of narrow bandwidth, recent technology
advances have improved its bandwidth from a few percent to tens of percent.
To understand a microstrip antenna’s performance and to simplify its design
process, several numerical analysis techniques have been developed and
converted to computer-aided-design (CAD) tools. Some of these analysis
techniques also allow the designer to know the physical insight of the antenna’s
electrical operating mechanism. It is the purpose of this section to discuss some
of the microstrip antenna’s technical features, its advantages and disadvantages,



38 Chapter 1

as well as its material considerations for space application. Analysis techniques,
design processes, and CAD tools are briefly presented. Several spacecraft
applications of the microstrip antenna are also highlighted.

1.4.2 Technical Background

This subsection presents the technical background of the microstrip
antenna, which is separated into three areas: features of the microstrip antenna,
advantage and disadvantage tradeoffs, and material considerations.

1.4.2.1 Features of the Microstrip Antenna. A microstrip antenna [44,45], as
shown in Fig. 1-17, consists of a radiating metallic patch or an array of patches
situated on one side of a thin, nonconducting, substrate panel with a metallic
ground plane situated on the other side of the panel. The metallic patch is
normally made of thin copper foil or is copper-foil-plated with a corrosion
resistive metal, such as gold, tin, or nickel. Each patch can be designed with a
variety of shapes, with the most popular shapes being rectangular of circular.
The substrate panel generally has a thickness in the range of 0.01 to 0.05 free-
space-wavelength (Ag). It is used primarily to provide proper spacing and
mechanical support between the patch and its ground plane. It is also often used
with high dielectric-constant material to load the patch and reduce its size. The
substrate material should be low in insertion loss with a loss tangent of less than
0.005, in particular for large array application. Generally, substrate materials
[45] can be separated into three categories in accordance with their dielectric
constant:

1) Having a relative dielectric constant (&) in the range of 1.0 to 2.0. This type
of material can be air, polystyrene foam, or dielectric honeycomb.

2) Having ¢ in the range of 2.0 to 4.0 with material consisting mostly of fiber-
glass reinforced Teflon.

3) With an g between 4 and 10. The material can consist of ceramic, quartz, or
alumina.

Although there are materials with & much higher than 10, one should be
careful in using these materials. As is discussed later, they can significantly
reduce the antenna’s radiation efficiency.

A single microstrip patch can be excited either by a coaxial probe or by a
microstrip transmission line as shown in Fig. 1-17. For an array of microstrip
patches, the patches can be combined either with microstrip lines located on the
same side of the patches or with microstrip-lines/striplines designed on separate
layers placed behind the ground plane. For the separate-layer configuration,
each patch and its feed line are electrically connected either by a small-diameter
metal post or by an aperture-coupling slot [46]. Regardless of the different layer
configurations, tens or hundreds of patch elements in an array can be fabricated
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Fig. 1-17. Rectangular and circular microstrip patch
antenna configurations.

by a single low-cost chemical etching process, and each single patch element
does not need to be fabricated individually (as many other types of radiating
elements do), which will lead to an overall lower antenna manufacturing cost.

1.4.2.2 Advantage and Disadvantage Trade-offs. There are advantages as
well as disadvantages associated with the microstrip antenna. By understanding
them well, one can readily design a microstrip antenna with optimum
efficiency, minimum risk, and lower cost for a particular application.

The advantages of microstrip antennas when compared to conventional
antennas (helix, horn, reflector, etc.) are:

The extreme low profile of the microstrip antenna makes it lightweight,
and it occupies very little volume of the structure or vehicle on which it
is mounted. It can be conformally mounted onto a curved surface so it is
aesthetically appealing and aerodynamically sound. Large aperture
microstrip arrays on flat panels can be made mechanically foldable for
space applications [47,48].

The patch element or an array of patch elements, when produced in
large quantities, can be fabricated with a simple etching process, which
can lead to greatly reduced fabrication cost. The patch element can also
be integrated or made monolithic with other microwave active/passive
components.

Multiple-frequency operation is possible by using either stacked patches
[49] or a patch with a loaded pin [50] or a stub [51].
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There are other miscellaneous advantages, such as the low antenna-radar
cross section (RCS) when conformally mounted on aircraft or missiles,
and the microstrip antenna technology can be combined with the
reflectarray technology [52] to achieve very large aperture requirement.

The disadvantages of the microstrip antennas are:

The microstrip antenna generally has a narrow bandwidth of less than 5
percent. However, with technology advancement, up to 50 percent
bandwidths have been achieved. Some of the techniques used are
multiple stacked patches, thicker substrates with aperture slot coupling
[53,54], external matching circuits [55], a sequential rotation element
arrangement [56,57], parasitic coupling [58], U-slot feed [59], and
L-shaped probe feed [60]. It is generally true that wider bandwidth is
achieved with the sacrifice of increased antenna physical volume.

The microstrip antenna can handle relatively lower RF power due to the
small separation between the radiating patch and its ground plane
(equivalent to small separation between two electrodes). Generally, a
few tens of watts of average power or less is considered safe. However,
depending on the substrate thickness, metal edge sharpness, and the
frequency of operation, a few kilowatts of power for microstrip lines at
X-band have been reported [61]. It should be noted that for space
application, the power-handling capability is generally less than that for
ground application due to a mechanism called multipacting breakdown
[62].

The microstrip array generally has a larger ohmic insertion loss than
other types of antennas of equivalent aperture size. This ohmic loss
mostly occurs in the dielectric substrate and the metal conductor of the
microstrip line power-dividing circuit. It should be noted that a single
patch element generally incurs very little loss because it is only a one-
half wavelength long. The loss in the power-dividing circuit of a
microstrip array can be minimized by using several approaches, such as
the series feed power-divider lines [45, 63], waveguide and microstrip
combined power dividers, and honeycomb or foam low-loss substrates.
For very large arrays, transmit/receive (T/R) amplifier modules can be
used on elements or subarrays to mitigate the effect of large insertion
loss.

1.4.2.3 Material Consideration. The purpose of the substrate material of a
microstrip antenna is primarily to provide mechanical support for the radiating
patch elements and to maintain the required precision spacing between the
patch and its ground plane. With higher dielectric constant of the substrate
material, the patch size can also be reduced due to a loading effect to be
discussed later. Certainly, with reduced antenna volume, higher dielectric
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constant also reduces bandwidth. There is a variety of types of substrate
materials. As discussed in Section 1.4.2.1, the relative dielectric constant of
these materials can be anywhere from 1 to 10. Materials with dielectric
constants higher than 10 should be used with care. They can significantly
reduce the radiation efficiency by having overly small antenna volumes. The
most popular type of material is Teflon-based with a relative dielectric constant
between 2 and 3. This Teflon-based material, also named PTFE
(polytetrafluoroethylene), has a structure form very similar to the fiberglass
material used for digital circuit boards, but it has a much lower loss tangent or
insertion loss. The selection of the appropriate material for a microstrip antenna
should be based on the desired patch size, bandwidth, insertion loss, thermal
stability, cost, etc. For commercial application, cost is one of the most
important criteria in determining the substrate type. For example, a single patch
or an array of a few elements may be fabricated on a low-cost fiberglass
material at the L-band frequency, while a 20-element array at 30 GHz may have
to use higher-cost, but lower loss, Teflon-based material. For a large number of
array elements at lower microwave frequencies (below 15 GHz), a dielectric
honeycomb or foam panel may be used as substrate to minimize insertion loss,
antenna mass, and material cost with increased bandwidth performance. A
detailed discussion of substrate material can be found in reference [45].

1.4.2.3.1 Space Application. When a microstrip antenna is used in space, its
substrate material must survive three major effects related to the space
environment: radiation exposure, material outgassing, and temperature change.
These effects are separately discussed below.

Radiation exposure. Exposure to cosmic high-energy radiation is an
important factor in space applications. Cosmic radiations, such as beta, gamma,
and X-rays, are similar to nuclear radiation in many respects. They can damage
materials after the prolonged exposure typical of a long space mission. The
most popular substrate material, as discussed earlier, for the microstrip antenna
is the Teflon-based PTFE. This material is generally combined with glass
microfibers or ceramic filler to strengthen its mechanical properties. In either
case, the component that is most susceptible to space radiation exposure
damage is the PTFE. This is because of the low cohesive forces between PTFE
molecular chains [64,65]. The primary effect of radiation on PTFE is the
reduction of molecular weight by breaking the large polymer molecule into
smaller parts. Oxygen is essential to some of the possible radiation induced
reactions. Thus, the damage due to radiation is minimized in an oxygen-free
environment such as space. The effect of molecular weight reduction is
primarily on mechanical properties. There will be an increase in brittleness and
reduction in tensile strength, modulus, and elongation. The electrical properties,
such as dielectric constant and loss tangent, are also affected by electrical
charge distributions in the resin which decays with time; and thus, the radiation
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dose rate is important. The degree to which PTFE is affected is essentially a
function of the amount of energy absorbed and is generally regardless of the
types of radiation. For examples, beta, gamma, X-ray, etc. all have about the
same effect. The radiation dose unit is the “rad” with one rad being equal to
100 ergs/gram. Table 1-2 is a summary of radiation doses in rads related to
damage levels to PTFE.

Frequently, the dose rate of 10 rads/hour is quoted for the Van Allen
Radiation Belt. At this rate, PTFE could operate for 5 to 50 years before a
threshold level of damage would occur.

Material outgassing. Outgassing is another phenomenon that needs to be
concerned when flying material in space. Outgassing causes a material to lose
its mass in the form of gases or volatile condensable matter when subject to a
vacuum, especially when it is heated as the antenna is exposed to sunlight in
space. Losing mass will certainly affect the material’s mechanical and electrical
properties. Several substrate materials manufactured by Rogers Corporation
have passed the outgassing test and are approved for space usage. Rogers’
composites of PTFE with either glass microfibers, ceramic filler, or Thermoset
Microwave Material (TMM) temperature stable hydrocarbon have all shown
outstanding resistance to outgassing (see Table 1-3), according to data

Table 1-2. Radiation amount in rads for damage to PTFE material.

In Air In Vacuum
Threshold level 2-7 x 10* 2-7 x 10° or more
50% tensile strength 10° 10’ or more
remains
Retains 100% elongation 2-5 x 10° 2-5 x 10°

Table 1-3. Outgassing test results of Rogers substrate material.

Rogers Rogers Rogers Rogers
Material Duroid Duroid Duroid Duroid
Type 5870 5880 6002 6010 TMM 3 TMM 10
PTFE PTFE
PTFE with PTFE with with with Thermoset Thermoset
Material Glass Glass Ceramic Ceramic  Polymer Polymer
Composition Microfiber Microfiber Filler Filler Composite Composite
Dielectric 2.3 2.2 2.9 10.0 3.0 10.0
constant
% TML 0.05 0.03 0.02 0.03 0.04 0.06
% CVCM 0.0 0.0 0.01 0.0 0.0 0.0

% WVR 0.04 0.02 0.01 0.02 0.03 0.04
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compiled by NASA test procedure SP-R-0022A [66,67]. The test procedure
consists of vacuum heating of 100- to 300-mg specimens in an enclosure. The
total mass loss (TML), collected volatile condensable materials (CVCM), and
water vapor recovered (WVR) are expressed as a percentage of the original
specimen mass. In general, materials with a TML greater than 1 percent or a
CVCM greater than 0.1 percent should be avoided in space application.

Temperature change. The effect of temperature in space on electrical and
physical properties of the substrate material must be taken into consideration
when designing a microstrip antenna. Since the space is a vacuum without
conduction medium, the temperature of an object could be extremely cold, e.g.,
—-100 deg C, when it is not exposed to the sunlight or it could become very hot,
e.g., +100 deg C, when it is directly illuminated by the Sun over a period of
time. The effects of these extreme temperatures could cause change to the
microstrip substrate material include dielectric constant (¢) and substrate
thickness, which will together cause an impedance change of the microstrip
patch or transmission line. Table 1-4 gives examples of the expected response
of microstrip transmission line to temperature change [45,68] for both non-
woven-glass PTFE and ceramic-loaded PTFE.

In addition to the above two substrate materials, Rogers corporation
developed a substrate material that is very insensitive to temperature changes
and is named the Thermoset Microwave Material (TMM). It is a highly filled
inorganic resin composite with tightly controlled dielectric constant value. Over
a temperature range of £100deg C, the TMM only changed its dielectric
constant value by less than 0.5 percent. At the high temperature of 300 deg C,
the TMM exhibited a thermal expansion amount of 1/3 of that of the PTFE
material. This TMM is highly recommended for space applications where there
is a concern regarding wide ranges of temperature variation.

Table 1-4. Example of microstrip substrate property change vs. temperature
changein vacuum.

Percent Change from 20 deg C Value;
Frequency = 18 GHz, 50-ohm Line

Temperature
(deg C) Non-Woven-Glass PTFE Ceramic-Loaded PTFE
Thickness € Impedance  Thickness € Impedance
-100 -131 1.36 -1.60 -0.26 5.06 -2.2
-60 -0.89 1.02 -1.20 -0.19 3.38 -14
+70 1.31 -0.53 1.20 015 -2.27 1.0
+110 2.37 -0.87 2.20 019 -342 1.6

+150 3.42 -1.50 3.40 026 447 2.0
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1.4.3 Analysis, Design, and CAD Tools

1.4.3.1 Analysis Techniques. The main reason for developing an analytic
model for the microstrip antenna is to provide a means of designing the antenna
without costly and tedious experimental iteration. Also, it may help the
designer to know the physical mechanisms of how the microstrip antenna
operates. With an analysis technique, the engineer should be able to predict the
antenna performance qualities, such as the input impedance, resonant
frequency, bandwidth, radiation patterns, and efficiency. There are many
different analysis techniques that have been developed for analyzing the
microstrip antennas. However, the most popular ones can be separated into four
groups: transmission-line circuit model, multimode cavity model, moment
method, and finite difference time domain (FDTD) approach. They are briefly
discussed below:

1.4.3.1.1 Transmission-Line Circuit Model. A microstrip patch, operating at
its fundamental mode, is essentially a Y2A-long microstrip transmission line and
can be represented by an equivalent circuit network [69,70]. For a rectangular
or square patch, its radiation is basically generated from its two edges with two
equivalent slots along the resonating dimension, as shown in Fig. 1-18. Thus,
the microstrip radiator can be characterized by two slots separated by a
transmission line, where each slot is represented by a parallel circuit of
conductance (G) and susceptance (B). The complete patch antenna can be
represented by the equivalent network shown in Fig.1-19 [69]. This
transmission li<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>